8 research outputs found

    Robust Query Optimization for Analytical Database Systems

    Get PDF
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION 107 BIBLIOGRAPHY 109 LIST OF FIGURES 117 LIST OF TABLES 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . . . . . 12

    Robust Query Optimization for Analytical Database Systems

    Get PDF
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 12

    alpha to omega: the G(r)eek alphabet of sampling

    Get PDF
    Sampling is the most versatile and easiest to implement car-dinality estimation method. Therefore, it is implemented inalmost every database management system, commercial ornot. Consequently, the main purpose of this paper is to pro-vide the reader with an intuition about sampling precision.In the context of query optimization, the basic procedurecan be described as follows. From a relationRcontainingntuples, a sample ofm < ntuples is drawn. Then, a querypredicatepis evaluated on themsample tuples, and thenumberkof qualifying sample tuples is recorded. Assumethe evaluation of the same predicatepon the relationRresults inlqualifying tuples. The task now is to producean estimateˆlforlwheren,m,kare given. The standardanswer to this task isˆl=knm. However, there are some (yetunanswered) fundamental questions:1. Is the standard estimator the best way to derive anestimate?2. What are the upper and lower bounds forl?3. How can we derive an estimate that minimizes the q-error?4. How large is the q-error we can expect for this esti-mate?5. For a given maximal allowed q-error, which sample sizemshould we choose?Since sampling is a probabilistic process, we will give prob-abilistic answers to these questions. Further, we show howresult cardinality estimates for selections and joins can significantly be improved

    Robust Query Optimization for Analytical Database Systems

    No full text
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION 107 BIBLIOGRAPHY 109 LIST OF FIGURES 117 LIST OF TABLES 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . . . . . 12

    Robust Query Optimization for Analytical Database Systems

    No full text
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 12

    Robust Query Optimization for Analytical Database Systems

    No full text
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION 107 BIBLIOGRAPHY 109 LIST OF FIGURES 117 LIST OF TABLES 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . . . . . 12

    Robust Query Optimization for Analytical Database Systems

    No full text
    Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 12

    Small selectivities matter: Lifting the burden of empty samples

    Full text link
    Every year more and more advanced approaches to cardinality estimation are published, using learned models or other data and workload specific synopses. In contrast, the majority of commercial in-memory systems still relies on sampling. It is arguably the most general and easiest estimator to implement. While most methods do not seem to improve much over sampling-based estimators in the presence of non-selective queries, sampling struggles with highly selective queries due to limitations of the sample size. Especially in situations where no sample tuple qualifies, optimizers fall back to basic heuristics that ignore attribute correlations and lead to large estimation errors. In this work, we present a novel approach, dealing with these 0-Tuple Situations. It is ready to use in any DBMS capable of sampling, showing a negligible impact on optimization time. Our experiments on real world and synthetic data sets demonstrate up to two orders of magnitude reduced estimation errors. Enumerating single filter predicates according to our estimates reveals 1.3 to 1.8 times faster query responses for complex filters
    corecore